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Systematic construction of multicomponent optical solitons

Q-Han Park* and H. J. Shin†

Department of Physics and Research Institute of Basic Sciences, Kyunghee University, Seoul, 130-701, Korea
~Received 6 July 1999!

A systematic method is presented to construct multicomponent optical solitons for the system governed by
the vector nonlinear Schro¨dinger equation. By solving the characteristic eigenvalue problem, we obtain a
generaln-component soliton solution in the presence of nonzero background fields. In the two-component case,
we show that this general solution not only includes previously known soliton solutions, e.g., bright-bright,
dark-bright, dark-dark pair solitons for self-focusing or self-defocusing media, but depending on the choice of
parameters it also exhibits different types of soliton solution. In particular, we obtain a general dark-bright type
solution in a self-focusing medium, which describes a breakup of a dark-bright pair into another dark-bright
pair and an ‘‘oscillating’’ soliton, or the reverse fusing process. In the case of a self-defocusing medium, we
generalize the previously known static dark-dark pair and show that a general dark-dark pair is non-static and
oscillates periodically through exchanging energies between two components. It is shown that the static case
arises when the complex soliton parameter is restricted to a pure imaginary number. We address about the
criterion for testing singularity in a general solution in terms of solution parameters, and also about the
non-Abelian SU(n) symmetry of the system.

PACS number~s!: 42.65.Tg, 05.45.Yv, 05.60.Gg
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I. INTRODUCTION

Optical solitons have been the subject of intense studie
view of their potential applications in future optical comm
nication systems and also in the development of ultra
optical switching devices. In optical fibers with norm
group-velocity dispersion, or in bulk media with sel
defocusing nonlinearity, solitons arise on a background fi
as localized intensity dips which are known as dark solito
@1#. It is known that dark solitons, when compared to brig
ones, are generally more robust than bright solitons and
less susceptible to Gordon-Haus jitter@2–4#. Recently, there
have been considerable interests in the effects of mult
modes, e.g., multifrequency and/or two different polariz
tions, to dark solitons as well as to bright solitons. By so
ing the relevant coupled nonlinear Schro¨dinger~NLS! equa-
tions for two-component pulses, various types of ex
solitons and solitary wave solutions such as bright-brig
dark-bright, and dark-dark pairs of solitons have been fou
@5#. The coupled NLS equation which governs the propa
tion of multimode pulses is not integrable in general and t
solitons do not exist. Nevertheless, in most cases soli
wave solutions can be found by looking for a steady sta
localized configuration. When the cubic nonlinear term in
coupled NLS equation is proportional to the total intensi
the coupled NLS equation becomes the integra
n-component vector NLS equation, also known as the Ma
kov model in the two component case, which admits ex
soliton solutions. Physically, the Manakov model describ
either the pulse propagation in a randomly birefringent fi
@6,7# or in an elliptically birefringent fiber with the ellipticity
angleu'35° and the relatively small beat length@8#. It also
describes the pulse propagation in bulk AlGaAs semicond
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tor waveguide operating at a wavelength below half its ba
gap @9#.

The integrability of the vector NLS equation has be
shown by Manakov who has also obtained the bright soli
in a focusing medium by applying the inverse scatter
method@10#. On the other hand, in the case of nonvanish
background fields of the multicomponent system, the inve
scattering method is technically highly involved and da
solitons in fact have been found in this way only for the o
component case. In the two component case, the Hi
method has been adopted to obtain dark solitons instea
the inverse scattering method@11,12#. In particular, Shep-
pard and Kivshar have shown that a set of nontrivial soli
solutions such as dark-dark and dark-bright pairs of solit
can be found in this way@12#. Using the Hirota method, they
have also found static bound states and multisoliton soluti
describing interactions among dark solitons. Despite its s
cess in deriving nontrivial soliton solutions, the Hiro
method, however, does not provide a systematic way to c
struct a general type of soliton solutions. This is because
method presupposes specific functional forms of each c
ponent. Indeed, this particular specification of solution for
results in the intensities of each component of the dark-br
and the dark-dark solitons to be static, which is not true
more general types of solitons as we will show later. Mo
over, the Hirota method is not appropriate in the case o
generaln-component vector NLS equation since it require
clever guess on functional forms for each component. Thi
quite difficult for n larger than two and it can be justifie
only after checking the large set of consistency conditions
addition to solving bilinear equations. Thus, the Hiro
method does not provide a constructive way to find a gen
soliton solution. Therefore, though the inverse scatter
method could provide eventually a general multicompon
soliton solution in nonzero backgrounds, we may safely
that a practical method to construct a general multicom
nent soliton solution is absent.
3093 ©2000 The American Physical Society
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In this paper, we resolve this problem by introducing
unifying framework for the construction of multicompone
solitons. Modifying the conventional inverse scatteri
method, we obtain a simple, yet systematic method to c
struct a general type of soliton solutions for then-component
vector NLS equation both for the self-focusing and the s
defocusing cases. We show that, in order to construct a
eral soliton solution for then-component vector NLS equa
tion, it requires only to solve the characteristic eigenva
problem for a couple of constant (n11)3(n11) matricesU
and V, which are determined by the parameters of ba
ground continuous wave~cw! fields as well as additiona
parameters characterizing solitons. A general one soliton
lution in arbitrary multicomponent cw backgrounds can
obtained in this way. We present a unifying treatment
solitons both for the self-focusing and the self-defocus
cases. In the self-defocusing case, we find that a gen
soliton solution obtained by the method can be singular
pending on the choice of solution parameters. A criterion
test the presence of singularity is given.

In order to demonstrate the power of the method, we w
out the two component case in detail. We find various ty
of nontrivial soliton solutions which generalize previous
known cases of soliton solutions including dark-bright a
dark-dark pairs of solitons. In particular, we obtain a gene
dark-bright type solution in a self-focusing medium, whi
exhibits a nontrivial breakup behavior of a dark-bright p
into another dark-bright pair and an ‘‘oscillating’’ soliton, o
its reverse fusion process. In the case of a self-defocu
medium, we generalize the previously known static da
dark pair and show that a dark-dark pair is not static in g
eral but oscillates periodically by exchanging energies
tween the two components. This nonstatic behavior
explained by using the non-Abelian symmetry of the vec
NLS equation. When the cw backgrounds of dark-dark p
have the same carrier frequencies, we show that the d
dark pair can be obtained by taking a SU(2)-symmetry rota-
tion of the dark-bright pair. In which case, we compute t
period of oscillation and show that the period is invers
proportional to the power of a cw background. In the case
different carrier frequencies, we explain how a general da
dark pair can be found, at least with a help of the MAPL
computer algebra system. By making an assumption of sm
detuning and equal amplitudes of cw background and us
perturbation, we found explicitly a dark-dark pair and t
oscillation period. The oscillation period is determined
the width and the grayness of dark solitons as well as
power of background cw fields. We show that it depends
the grayness only if there is detuning between two cw ba
ground fields.

The plan of the paper is the following; in Sec. II, w
introduce the characteristic problem for the construction
one soliton in the vector NLS equation. Explicit examples
the two component NLS equation are given in Secs. III a
Sec. IV, which deal with the dark-bright and the dark-da
pairs of solitons respectively, and Sec. V is a discussion.
derivation of the characteristic problem and a nontrivial e
ample of the dark-dark pair are treated separately in the
pendixes.
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II. THE CHARACTERISTIC PROBLEM

The vector NLS equation under consideration is given

]zck52 i ]x
2ck22i ~s1uc1u21•••1snucnu2!ck ,

~1!
k51, . . . ,n,

where the signaturessk are either11 or 21. In a self-
focusing medium, for example,s15•••sn51 while in a
self-defocusing medium,s15•••sn521. As we will see
later, the vector NLS equation is integrable for any set
values ofsk . Thus, we treat both the self-focusing and t
self-defocusing cases simultaneously in a single framew
without specifyingsk unless we need them explicitly. A
simple but nontrivial solution of the vector NLS equation
the continuous wave~cw! background solution,

ck
cw5akexp~ ibkx1 ickz!;

~2!
ck[bk

222~s1ua1u21•••1snuanu2!.

Now, we look for multicomponent solitons which satisfy th
asymptotic boundary condition:ck→ck

cwexp(iak
6) as x

→6` up to certain constant phasesak
6 . As we show in

Appendix A, a general multicomponent soliton can be co
structed systematically by applying the Ba¨cklund transfor-
mation~BT! to the background cw solution. Generally, BT
known as a mapping which adds one additional soliton to
given configuration. In the simplest case, BT generates
soliton with a vanishing asymptotic boundary behavior wh
applied to a trivial vacuum solution. Successive applicatio
of BT also generate multisoliton solutions. An explicit pr
cedure of constructing one soliton using BT is explained
Appendix A. Despite the complexity of the procedure, t
method and the final outcome can be summarized quite s
ply. That is, the problem of constructing one multicomp
nent soliton reduces to the following characteristic proble
consider (n11)3(n11) matricesU andV defined by

U5S 0 a1 ••• ••• an

2s1a1* 2B1 0 ••• 0

A 0 � � A

A A � � 0

2snan* 0 ••• 0 2Bn

D ,

~3!

V5S 0 a1C1 ••• ••• anCn

2s1a1* C1 E11 ••• ••• E1n

A A � A

A A � A

2snan* Cn En1 ••• ••• Enn

D ,

where

Bk5~2j1 ibk!, Ck5~bk12i j!,

Ei j 52 is iai* aj ~ iÞ j !,
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Ekk52 i S bk
22(

j 51

n

s j uaj u21skuaku214j2D . ~4!

These matrices are made of parameters of cw backgro
ak ,bk and a new complex parameterj, the physical meaning
of which will be given later in terms of the intensity and th
grayness of a soliton. One can readily check that these
matrices commute, i.e.,@U,V#50. Thus, by solving the ei-
genvalue problem, we can find an (n11)3(n11) matrix
D5(di j ) which diagonalizes matricesU and V simulta-
neously,

D21UD5diag~p0 ,p1 , . . . ,pn!,
~5!

D21VD5diag~q0 ,q1 , . . . ,qn!,

where eigenvaluespk and qk(k50,1, . . . ,n) are complex
numbers. Then, a general multicomponent one soliton s
tion is given by

ck5ck
cw1

2~j1j* !skf0fk*

~ uf0u21s1uf1u21•••1snufnu2!

for k51, . . . ,n. ~6!

Here,fk are defined by

fk[(
j 50

n

dk jujexp@2Dk2pjx2qjz#, ~7!

whereuj are arbitrary complex constants and

D05jx1S 2i j21 i(
l 51

n

s l ual u2D z,

Dk5~j1 ibk!x1 i S bk
22(

l 51

n

s l ual u212j2D z, ~8!

for k51, . . . ,n.
ds

o

u-

Thus, we obtain a solution which is specified by quite a la
set of parameters; (ak ,bk), representing amplitudes and fre
quencies of background cw light, andj, controlling the
width and the grayness of a soliton, and finally compl
constantsuk which are related to the soliton location. How
ever, when some of the signaturessk ~or all of them as in the
self-defocusing case! are negative, not all the domain of pa
rameter space admit physically sensible soliton solutio
The solution in Eq.~6! becomes singular when the denom
nator uf0u21s1uf1u21•••1snufnu2 vanishes. Though sin
gular solutions may find certain physical applications
confining the solution to a restricted region which avoids
singular region, generally we are only interested in no
singular solutions. So far, unfortunately, we have not be
able to find a concrete criterion for testing the singular b
havior of solutions only in terms of a given set of param
eters, such as matricesU andV. Nevertheless, one may scru
tinize the behavior of the denominator for specific cas
under consideration and analyze the singular behavior w
out much difficulty.

In the following two sections, we work out the two
component case (n52) in detail. We solve the characterist
problem to obtain solitons for different values ofs1 ands2,
with an explicit analysis on the singularity structure of so
tions.

III. DARK-BRIGHT PAIR

The two-component vector NLS equation is presuma
most relevant physically in view of its use in describing t
propagation of light with two different polarizations. Earlie
works on the vector NLS equation thus have focused only
the two-component case. First, we consider the case w
only c1 has nonzero cw background so thata1Þ0,a250.
This will lead to the dark-bright type soliton solution. But w
emphasize that this solution will also include the brigh
bright type solution in the limit wherea1 goes to zero. In this
case, matricesU andV are given by
U5S 0 a1 0

2s1a1* 2~ ib112j! 0

0 0 2~ ib212j!
D ,

~9!

V5S 0 a1~b112i j! 0

2s1a1* ~b112i j! 2 i ~b1
214j2! 0

0 0 2 i ~b2
22s1ua1u214j2!

D .

Eigenvalues ofU andV can be readily found with the result

p05
1

2
@2~ ib112j!1A~ ib112j!224s1ua1u2#,

p15
1

2
@2~ ib112j!2A~ ib112j!224s1ua1u2#, ~10!

p252~ ib212j!,
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for matrix U and

q05~b112i j!p0 ,

q15~b112i j!p1 , ~11!

q252 i @b2
21~s122s2!ua1u214j2#,

for matrix V. The matrix D, which diagonalizesU and V
simultaneously via the similarity transformation, is dete
mined only up to a matrix which leaves the eigenvector
variant under the similarity transformation. We fix this am
biguity by choosingD by

D5S a1 a1 0

p0 p1 0

0 0 1
D . ~12!

Then, Eq.~7! gives rise to

f05a1eiD1/2~u0e2RX1u1eRX!,

f15e2 iD1/2~p0u0e2RX1p1u1eRX!, ~13!

f25u2exp@jx12i j2z#,

where

D15b1x1~b1
222s1ua1u2!z,

R5A~ ib1/21j!22s1ua1u2, ~14!

X5x1~b112i j!z,

andu0 ,u1 are arbitrary constants. Finally, from Eq.~6!, we
obtain a general expression for the ‘‘dark-bright pair’’
soliton in the two-component case:

c15a1eiD1F11
2

M
s1~j1j* !~u0e2RX1u1eRX!

3~p0* u0* e2R* X* 1p1* u1* eR* X* !G ,
~15!

c25
2

M
s2a1u2* ~j1j* !~u0e2RX1u1eRX!

3exp@j* x22i j* 2z#,

where the denominatorM is given by

M5ua1~u0e2RX1u1eRX!u21s1u~p0u0e2RX1p1u1eRX!u2

1s2uu2exp~jx12i j2z!u2. ~16!

This shows that ifs1 or s2 is minus one, the denominatorM
can possess zeros thereby makingc1 andc2 singular. For a
better understanding about the behavior of solutions, we n
consider each case ofs i separately.

A. The self-focusing case„s1Äs2Ä1…

In this case, the denominatorM is positive definite so tha
c1 andc2 are always nonsingular. In order to understand
-
-

w

e

behavior of the general solution in Eq.~15!, we simplify the
expression in Eq.~15! in terms of a new complex paramete
S1 ib defined through

2ua1ucosh~S1 ib![ ib112j. ~17!

Then, we have

p052ua1uexp~2S2 ib!, p152ua1uexp~S1 ib!
~18!

and

R5ua1usinh~S1 ib!, X5x1@2b112i ua1ucosh~S1 ib!#z.
~19!

As a particular case, we first assume thatu050. Also, we
take thatu25u1ua1uA11e2S, which can be done by choos
ing appropriate origins of coordinatesx andz. Then, we ob-
tain a simple expression of the solution

c15ccwe2 ib~ i sinb1cosbtanhW!,
~20!

c25ccwcosbA11e22Se2 iNsechW,

where

W5ua1ucosbe2S@x1~2b112ua1ue2Ssinb!z#,
~21!

N52ua1usinbe2SFx1S 2b12
ua1ue2Scos 2b

sinb D zG ,
and ccw5a1exp@ib1x1i(b1

222ua1u2)z# is the cw background.
Equation~20! represents a dark-bright pair of soliton sol
tion in a self-focusing medium and agrees with previous
sults @13,14#. Similarly, had we assumed thatu150 instead
of u050, we would have obtained the same solution exc
for the changes:b→2b andS→2S. Equation~20! shows
that the intensity of the dip of the dark componentc1
reaches to zero only when sinb50. Thus, the parameterb
measures the grayness of the dark component while the
rameterS, in combination withua1u andb, controls the pulse
width.

Another special case of solution withu250, however,
shows a completely different behavior such that

c152ccw
coshScosh~W22ib!1cosb cos~N12iS!

coshScoshW1cosbcosN
,

~22!
c250,

where

W52ua1usinhScosbFx1S 2b122ua1usinb
cosh2S

sinhS D zG ,
~23!

N52ua1ucoshSsinbFx1S 2b112ua1usinhS
cos 2b

sinb D zG ,
and we have assumedu05u1exp(S1ib) without loss of gen-
erality. Note thatc2 vanishes identically so thatc1 becomes
a solution of the scalar NLS equation. In the limitx
→6`,c1 approaches asymptotically to2ccwe72ib. On the
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other hand, if we take the limit ua1u→0 keeping
g([ua1ueScosb) constant,c1 reduces to

c152geidsechW for W5g~x12Vz!,
~24!

d5Vx1~V22g2!z,

which is the well-known bright soliton of the scalar NL
equation. Thus, Eq.~22! represents a bright soliton in th
presence of a nonvanishing cw background@15#. The pres-
ence of a periodic function, cosN, in the expression ofc1
implies that the bright soliton and the cw background int
acts by exchanging energy periodically thus becoming
‘‘oscillating soliton.’’ This oscillating behavior can be see
in Fig. 1. Moreover,c1 possesses a unique property wh
S50. In this case,W522ua1u2(sin 2b)z, that is, it depends
on z only. This makes soliton to be trapped completely by
light. Recently, this soliton-trapping property of cw light h
been applied to the problem of soliton timing@16#.

Now, in the case of a general solution where allui are
nonzero, all the above behaviors show up together.
asymptotic analysis shows that this solution describe
breakup of a dark-bright pair into another dark-bright p
and an ‘‘oscillating’’ soliton, or its reverse fusing proce
depending on the choice of parameters. Instead of presen
the asymptotic analysis, we show such behaviors in Fig
and 2. Figures 1 and 2 show intensity profiles ofc1 andc2
with parameter values given bya150.8,b15b250,u05u1

FIG. 1. Intensity profiles~a! uc1u2 and ~b! uc2u2 with a1

50.8, b150.2, b2520.2, u051, u151, u251, S51.55, b
50.92.
-
n

n
a

r

ing
1

5u251,S51.55,b50.92. These figures show a breakup
dark-bright pair into another dark-bright pair and an oscill
ing soliton. Different choices of parameter values lead to
reverse process of fusion.

B. The self-defocusing case„s1Äs2ÄÀ1…

This case corresponds to the bulk media with se
defocusing nonlinearity, or the optical fiber with norm
group-velocity dispersion. As in the previous case, we int
duce a new complex parameterS1 ib instead ofj,

2ua1usinh~S1 ib![ ib112j ~25!

so that eigenvaluesp0 ,p1 become

FIG. 2. Dotted and solid curves representuc1u2 and uc2u2, re-
spectively, for various values ofx at ~a! z5210, ~b! z50, and~c!
z510. This shows the dynamics of a solution which forz@1 is the
dark-bright pair plus the solution in Eq.~22!.
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3098 PRE 61Q-HAN PARK AND H. J. SHIN
p05ua1uexp~2S2 ib!, p152ua1uexp~S1 ib!.
~26!

Then, the denominatorM in Eq. ~16! reduces to

M5ua1u2@~12e22S!uu0u2e2RX2R* X*

1~12e2S!uu1u2eRX1R* X*

12Re$~11e2ib!u0* u1eRX2R* X* %#

2uu2u2UexpF S 2
i

2
b11ua1usinh~S1 ib! D x

12i S 2
i

2
b11ua1usinh~S1 ib! D 2

zGU2

, ~27!

which shows thatM becomes negative definite only ifu0
50, u1Þ0, S.0 @case~a!# or u0Þ0, u150, S,0 @case~b!#.
Otherwise,M possesses zeros which make the solution
gular. In case~a!, we assume the relation,uu2u25ua1u2(e2S

21)uu1u2, without loss of generality. Then, Eq.~15! reduces
to the dark-bright pair as in Fig. 3~a!,

c15ccwe2 ib~ i sinb2cosbtanhW!,
~28!

c25ccwA12e22Scosbe2 iNsechW,

where

W5ua1ue2Scosb@x1~2b122ua1ue2Ssinb!z#,
~29!

N5ua1ue2SsinbFx1S 2b11ua1ue2S
cos 2b

sinb D zG ,
and ccw5a1exp@ib1x1i(b1

212ua1u2)z# is the cw background
In case~b!, by assuming thatuu2u25ua1u2(e22S21)uu0u2, we
obtain the dark-bright pair which is the same as in Eq.~29!
with S→2S up to a global U(1) phase rotation.

The dark-bright pair in Eq.~28! has been obtained prev
ously by using the Hirota method@12,13#. Note that when
S50, c2 vanishes whilec1 becomes the dark soliton of th
scalar NLS equation. As before, the parameterb measures
the grayness of a dark component, i.e., the ratio between
maximum and the minimum intensities of soliton is given
cos2b. As S increases, the bright solitonc2 emerges at the
cost of broadening the dark componentc1. In the limit
whereS goes to infinity, both dark and bright componen
are completely flattened thus becoming cw backgrou
fields. Therefore, the amplitude of the bright componen
limited by that of the dark component. This contrasts w
the self-focusing case in Eq.~20! where the amplitude of the
bright component is unlimited and becomes very large at
cost of narrowing the pulse width.

C. The mixed cases1ÄÀs2Ä1 or s1ÄÀs2ÄÀ1

This corresponds to the case where each polariza
components feel opposite types~self-focusing and self-
defocusing! of nonlinearity. A similar analysis on the de
nominatorM shows that nonsingular solutions are possi
for three cases: case~c!, u250 (s152s251); case~d!,
u050, u1Þ0, S,0 (s152s2521); and case~e!, u0Þ0,
-

he

d
s

e

n

e

u150, S.0 (s152s2521). The solution for case~c! is
the same as in Eq.~22!. For case~d! and case~e!, we use the
same parameterS1 ib as in the self-defocusing case. Th
solution for case~d! @case~e!# can be obtained from Eq.~28!
by replacing A12e22S with Ae22S21 ~respectively,
Ae2S21) in c2. However, these solutions are fundamenta
different from those of cases~a! and ~b!. Unlike the self-
defocusing case, the amplitude of the bright pair can gr
indefinitely while the pulse width of both the bright and th
dark pairs both sharpens. Solutions of cases~d! and~e! may
be compared with the ‘‘inverted’’ and the ‘‘noninverted
ones in@14#.

FIG. 3. ~a! The dark-bright pair witha151, a250, b150.12,
S50.5, b50.2, ~b! the SU(2)-rotated dark-bright pair, and~c! the
dark-dark pair witha151, a250.7, b150.3, b2520.3, u051, u1

51, u251, S50.49,b50.13. Curves A, B, and C representuc1u2,
uc2u2 and uc1u21uc2u2, respectively.
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IV. DARK-DARK CASE

In the previous section, we found the dark-bright pair
solitons when the background cw light is present only alo
te
s

ar
t

rk
er
rk

e
e
n

ta
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ac

ve
ion
f
g

the componentc1. When the cw background is present
both components, we are led to consider the dark-dark p
of solitons which are characterized by parameters in the
tricesU andV,
U5S 0 a1 a2

2s1a1* 2~ ib112j! 0

2s2a2* 0 2~ ib212j!
D ,

~30!

V5S 0 a1~b112i j! a2~b212i j!

2s1a1* ~b112i j! 2 i ~b1
22s2ua2u214j2! 2 is1a1* a2

2s2a2* ~b212i j! 2 is2a2* a1 2 i ~b2
22s1ua1u214j2!

D .
Thus, in the given cw backgrounds specified by parame
a1 ,a2 and b1 ,b2, the dark-dark pair of soliton solution i
characterized by a complex parameterj amounting to two
degrees of freedom. This should be compared with the d
dark pair of solitons in@12# which has only one independen
parameter. In fact, as we show in the following, the da
dark soliton in Ref.@12# appears only as a special case wh
the real part ofj goes to zero. This shows that our dark-da
soliton with a nonvanishing real part ofj is a completely
new type of dark-dark soliton solution which has not be
obtained previously. We also find that the nonvanishing r
part of j results in an interesting behavior of the solito
solution, i.e., it induces a periodic modulation of the to
intensity of the dark-dark soliton in contrast to the static c
of total intensity in Ref.@12#.

Now, we study the dark-dark case in detail. The char
teristic eigenvalue problem for matricesU and V requires
solving cubic polynomial equations. We assume for con
niencea1 anda2 to be real so that the characteristic equat
for the matrixU becomes

p31@4j1 i ~b11b2!#p21@4j212i ~b11b2!j1s1a1
2

1s2a2
22b1b2#p12~s1a1

21s2a2
2!j1 i ~s1a1

2b2

1s2a2
2b1!50. ~31!
rs

k-

-
e

n
al

l
e

-

-

Solving this cubic equation, we obtain eigenvalues

p052
1

3
~ ib11 ib214j!2

12 iA3

12
K1/3

1
11 iA3

3
LK21/3,

~32!

p152
1

3
~ ib11 ib214j!2

11 iA3

12
K1/31

12 iA3

3
LK21/3,

p252
1

3
~ ib11 ib214j!1

1

6
K1/32

2

3
LK21/3,

where

K524R14A4L31R2,

L524j222i ~b11b2!j1b1
21b2

213s1a1
213s2a2

22b1b2 ,

R5216j3212i ~b11b2!j226~b1
21b2

214b1b223s1a1
2

23s2a2
2!j22i ~b1

31b2
3!29is1a1

2~b122b2!

29is2a2
2~b222b1!13ib1b2~b11b2!.

~33!

We choose the matrixD which diagonalizesU by
n by
D5S ~ ib112j1p0!~ ib212j1p0! ~ ib212j1p1!~ ib112j1p1! ~ ib112j1p2!~ ib212j1p2!

2s1a1~ ib212j1p0! 2s1a1~ ib212j1p1! 2s1a1~ ib212j1p2!

2s2a2~ ib112j1p0! 2s2a2~ ib112j1p1! 2s2a2~ ib112j1p2!
D . ~34!

This matrix D also diagonalizesV through similarity transformation and the resulting diagonal elements are give
eigenvalues ofV,

qk5
~b112i j!pk

21~ ib1b212jb122jb214i j2!pk2s2a2
2~b22b1!

~ ib212j1pk!
, k50,1,2. ~35!
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Finally, from Eqs.~6!–~8! we obtain a general dark-dark pa
of soliton solution

ck5ck
cw1

2~j1j* !skf0fk*

~ uf0u21s1uf1u21s2uf2u2!
for k51,2,

~36!

where

f05 (
k50

2

@~ ib112j1pk!~ ib212j1pk!uk

3exp~2D02pkx2qkz!,
~37!

f152s1(
k50

2

a1~ ib212j1pk!ukexp~2D12pkx2qkz!,

f252s2(
k50

2

a2~ ib112j1pk!ukexp~2D22pkx2qkz!,

and Dk are as in Eq.~8!. This solution provides a genera
expression of the dark-dark pair of soliton with a proviso th
parameters are chosen in such a way to avoid the singul
of the solution as explained in the previous section. Inst
of analyzing the properties of the dark-dark solution in
general context, we first restrict to a few limiting cases of
above solution which agree with previously known solutio
and then explain the new features of a more general solu

The simplest case of the dark-dark pair as given ab
arises when each cw background has the same carrier
quency, i.e.,b15b2. In this case, the dark-dark pair can a
ways be transformed into the bright-dark pair through
‘‘global’’ symmetry of the vector NLS equation defined a
follows; if we rewrite the vector NLS equation in a matr
form in terms of the vectorC5(c1 , . . . ,cn) t and the diag-
onal matrixS05diag(s1 , . . . ,sn) such that

]zC52 i ]x
2C22i ~C†S0C!C, ~38!

then the equation is invariant under the symmetry rotati
C→MC, where then3n matrix M satisfies

M†S0M5S0 . ~39!

Since this symmetry rotation can always bringa2 to zero in
U, we are in the same position as in the previous sec
which led to the bright-dark pair. Thus, in the se
defocusing case (S0521) for example, the dark-dark pa
appears as a SU(2) rotation of the dark-bright pair~see Fig.
4!, e.g., as in Eq.~28! such that

c15eid~cosu!ccwe2 ib~ i sinb2cosb tanhW!

1 ieih~sinu!ccwA12e22S~cosb!e2 iN~sechW!,

c25 ie2 ih~sinu!ccwe2 ib~ i sinb2cosb tanhW!

1e2 id~cosu!ccwA12e22S~cosb!e2 iN~sechW!,

~40!

where the coefficients of the linear combination areSU(2)
parameters andW andN are defined as in Eq.~29!.
t
ity
d

e
,
n.
e
re-

e

:

n

Unlike the static dark-dark pair, each components of
dark-dark pair in Eq.~40! are linear combinations of the tan
and the sech terms with a time-dependent relative ph
This leads to an interesting oscillating behavior of intensit
of each component,uc1u2 and uc2u2, so that the dark-dark
pair is no longer static. In order to see this, we simply n
that the relative phase factore2 iN causes the intensitiesuc1u2
and uc2u2 to possess an oscillating term proportional
cos(N1d2b2h) or sin(N1d2b2h). The period of oscilla-
tion can be obtained by focusing on the trajectory of a soli
which occurs along the line,

W5ua1ucosbe2S@x1~2b122ua1usinbe2S!z#50.
~41!

With such a restriction,N reduces to

N5
ua1u2e2S

2ua1u~sinb!e2S22b1

x, ~42!

which shows that the period of oscillation is

Dx5
4p@ ua1u~sinb!e2S2b1#

ua1u2e2S
~43!

or in terms of the variablez,

Dz5
2p

ua1u2e2S
. ~44!

Obviously, this periodic behavior has nothing to do with t
beating between the cw background fields since cw fie
have the same carrier frequencies in our case. Note tha
amplitude of the oscillating terms have a factorA12e22S so
that the oscillating behavior vanishes forS50. In which
case, the solution reduces to the dark-dark pair which is
tained through the SU(2) rotation of the scalar dark solit
Since the total intensity (uc1u21uc2u2) is also invariant un-
der the SU(2) symmetry transformation, it does not show
oscillating behavior. However, as we show below, in t
general case whereb1Þb2, the total intensity also exhibits
an oscillating behavior.

A less trivial case arises whenb1Þb2 and the real part of
j goes to zero. In fact, this is the case which agrees with
dark-dark pair in Ref.@12#. In order to see this, we first se
s15s2521,u150 and consider the solution in the limite
→0 wheree is the real part ofj. We also assume the coe
ficient u2 to be O(e1/2), or u25Aeũ0 where ũ0 is of the
same order withu0. Then, fore!1 a lengthy but straight-
forward calculation shows that the numerator and the
nominator in Eq.~36! takes the form with an appropriat
choice ofũ0,

2~j1j* !f0fk* 54eCkck
cwuexp~2 p̄0x2q̄0z!u21O~e3/2!,

~45!uf0u22uf1u22uf2u25eC0@ uexp~2 p̄0x2q̄0z!u2

1uexp~2 p̄2x2q̄2z!u2#1O~e3/2!,
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where coefficientsC0 ,C1 ,C2 are functions of the set of so
lution parameters;a1 ,a2 ,b1 ,b2 ,u0 ,Im(j) whose explicit
forms are too complicated to present here.p̄ and q̄ are ei-
genvalues evaluated ate50. In particular, one can easil
check thatp̄2 and q̄2 are pure imaginary. Then, in the lim
e→0, we have

ck5ck
cwF S 12

2Ck

C0
D1

2Ck

C0
tanhS p̄0x1q̄0z

2
D G . ~46!

The coefficientsC0 ,C1 ,C2 are not independent but relate
implicitly through the set of solution parameters. Thou

FIG. 4. The SU(2)-rotated dark-bright pair,~a! uc1u2 and ~b!
uc2u2, and ~c! uc1u21uc2u2 with a151, a250, b150.12, S50.5,
b50.2, d50, h50, u50.9.
these relations can be found in principle, due to the comp
ity of the coefficientsCk , here we only point out that the
dark-dark pair of solitons in Eq.~46! agrees with the result in
Ref. @12# where the relation among the coefficients is a
found. Thus, we have shown that the dark-dark pair of s
tons becomes the static dark-dark pair in the limit where
real part of the soliton parameterj vanishes.

When Re(j)Þ0 andb1Þb2, the dark-dark pair in genera
is no longer static. Even the total intensity oscillates perio
cally. This behavior is drawn in Fig. 3~c! and Fig. 5.

The oscillating behavior may be referred to the cro
terms arising in taking the absolute square offk’s which are
proportional to cos@Im(p01p2* )x1Im(q01q2* )x#. This in-

FIG. 5. Intensity profiles of a general dark-dark soliton~a! uc1u2,
~b! uc2u2, and ~c! uc1u21uc2u2 with a151, a250.7, b150.3, b2

520.3, u051, u151, u250, j50.5.
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3102 PRE 61Q-HAN PARK AND H. J. SHIN
dicates that if the soliton moves along the trajectoryz5kx
for some constantk, the period of oscillation is given by

Dx52p/@ Im~p01p2* !1k Im~q01q2* !#. ~47!

To illustrate the oscillating behavior, we have worked o
explicitly in the Appendix B a special case of the dark-da
pair by assuming thata15a25a, b152b25b, and ub/au
!1. The dark-dark pair of solitons is given up to the ord
O(b/a) through Eqs.~B5!–~B9!. In the case of equal carrie
frequencies, i.e.,b50, this solution becomes the dark-da
pair obtained through the SU(2) rotation of the dark-brig
pair as explained before. The period of oscillation up to
orderO(b2/a2) is

Dz5
pe2sr

a2 F12S b

aD 2S 4e2srsin2si2
e2srcos 2si

cosh2sr1cos 2si

2
sin2si

cosh2sr2cos 2si
D G . ~48!

Note that the leading order term depends only onsr . By
identifying exp(2sr)[2exp(S), one can see that the leadin
order term reduces precisely to the result in Eq.~44!. Thus,
the grayness parametersi @see Eq.~B10!# controls the period
only through higher-order terms. In other words, the osci
tion period is independent of the grayness if there is no
tuning between two cw background fields.

V. DISCUSSION

In this paper, we have introduced a systematic metho
construct multicomponent soliton solutions of the vec
NLS equation. Ann-component soliton can be obtained b
solving the characteristic problem for any given set of soli
and cw background parameters. In a unifying treatmen
the two component case both for the self-focusing and
self-defocusing media, we have constructed explicitly va
ous types of soliton solutions as well as recovering
known ones, e.g., dark-bright and dark-dark pairs of soli
and also an ‘‘oscillating’’ soliton. We found that the dar
bright pair of the self-focusing case is in general unsta
against the breakup into another dark-bright pair and an
cillating soliton. Depending on the choice of parameters,
reverse process, the fusion of a dark-bright pair and an
cillating soliton into another dark-bright pair is also possib
In the case of a self-defocusing medium, the dark-dark pa
in general nonstatic, i.e., it exhibits a periodic energy
change between two components with a period invers
proportional to the intensity of cw background. We ha
shown that the dark-dark pair with the same frequency
backgrounds can always be obtained from a SU(2) rota
of the dark-bright pair, and the most general case of
dark-dark pair with different frequency cw backgrounds c
be found at least with the help of theMAPLE computer alge-
bra system combined with an action of SU(2) rotation. In
general case of vector NLS equation withn components, the
characteristic problem requires solving an (n11)th order
complex polynomial equation. Thus, a general analytic so
tion for n.4 is not possible. However, we emphasize th
for a given set of numerical parameters, the (n11)th order
t

r
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e

-
-

to
r

n
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e
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n
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-
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polynomial equation can be solved numerically and the ex
n-component soliton solution can be found at least num
cally.

In the paper, we have considered only one soliton solut
of the multicomponent vector NLS equation. Finding mul
soliton solutions for then-component vector NLS equation i
important in order to understand interactions among solito
A general method of constructing multisolitons and expli
analysis of multicomponent, multisolitons in the present v
tor NLS system will appear in separate papers.
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APPENDIX A: DERIVATION OF THE CHARACTERISTIC
EQUATION

The Bäcklund transformation is usually defined to be a s
of first-order differential equations which generates a so
tion of the ~integrable! second-order nonlinear differentia
equation from a known one. In order to find the Ba¨cklund
transformation~BT! of the vector NLS equation as in Eq
~1!, we first rewrite the vector NLS equation in a matr
form:

]zE52]x
2Ẽ12E2Ẽ, ~A1!

where the (n11)3(n11) matricesE and Ẽ[@T,E#, with
the diagonal matrixT5diag(i /2,2 i /2,2 i /2, . . . ,2 i /2), are
defined by

E5S 0 c1 ••• cn

2s1c1* 0 ••• 0

A A A

2sncn* 0 ••• 0

D ,

~A2!

Ẽ5S 0 ic1 ••• icn

is1c1* 0 ••• 0

A A A

isncn* 0 ••• 0

D .

One can readily check that the components of the ma
equation in Eq.~A1! is indeed the vector NLS equation i
Eq. ~1!. One of the nice features of the matrix formulation
the vector NLS equation is that it is straightforward to wr
the Lax pair for the vector NLS equation,

LxC[~]x1E1lT!C50,
~A3!

LzC[~]z1EẼ2]xẼ2lE2l2T!C50,

where l is the spectral parameter. By using the fact th
†T,@T,E#‡52E, it can be shown that the matrix equation
Eq. ~A1! arises from the integrability condition:@Lx ,Lz#
50 for any value ofl. Following Ref.@17#, we introduce a
matrix potentialu such thatE5u21]xu. This allows us to
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state the Ba¨cklund transformation of the vector NLS equ
tion as follows; let (Ef5 f 21]xf ,C f) be a set of solution
satisfying Eqs.~A3! and ~A1!. Then, (Eg5g21]xg,Cg) is
another set of solution if they are related through the
~which we call type I!,

Cg5~l1 ihg21f !C f , ~A4!

with the parameterh of BT. Combining the type-I BT with
the linear equations in Eq.~A3!, we have a more explicit, ye
equivalent expression of BT~type II!. That is, for a given
solutionEf , a solutionEg can be given by

Eg5Ef2 ih@T,h#, ~A5!

if h5g21f satisfies the type-II BT as the first-order nonli
ear differential equations:

]xh52@Ef ,h#1 ih@T,h#h,
~A6!

]zh5@]xẼf2EfẼf ,h#1 ih@h,Ef #h2h2@T,h#h2.

In order to solve Eq.~A6! in general, we first note that th
matrix E possesses the generalized Hermitian property:

E†52SES, ~A7!

where the diagonal matrixS5diag(1,s1 , . . . ,sn) measures
the sign of the nonlinear terms of the vector NLS equat
having the property thatS251. In the self-focusing case
(s15•••5sn51), Eq.~A7! shows thatE is anti-Hermitian,
i.e., E†52E while in the self-defocusing case (s15•••

5sn521), E is Hermitian, i.e.,E†5E. For other cases o
S,E is neither Hermitian nor anti-Hermitian but in a certa
sense a mixture of both. Similarly, matrix potentialsg, f and
thush5g21f possess the property of generalized unitarit

g†5Sg21S, f †5S f 21S, h†5Sh21S. ~A8!

Combining Eq.~A5! with Eqs.~A7! and~A8! and also using
the fact thatT†52T, we have

@T,h2h21#50. ~A9!

This can be solved in general forh in terms of a projection
matrix P satisfyingP25P,

h52~cosu!P2eiu, ~A10!

whereu is an arbitrary real parameter. Equations~A8! and
~A10! implies thatP also possesses the generalized unitar
i.e., P†5SPS. Using the projection property,P25P, and
Eq. ~A10!, we obtain the following relation from the type-I
BT:

~12P!@]xP1Ef P2 ihTe2 iuP#50,

~12P!@]zP1~EfẼf2]xẼf !P1 ihEfe
2 iuP

1h2e22iuTP#50. ~A11!

The projection matrixP in general projects down any (n
11)-dimensional vector to the subspace of dimension
thann11. In this paper, we restrict only to the case of on
dimensional subspace for simplicity. Projections to su
n

,

s
-
-

spaces with dimensions greater than one lead to diffe
types of soliton solutions in general possessing more solu
parameters. However, forn<2, the one-dimensional projec
tion is the only nontrivial one. This fact, combined with th
generalized unitarity ofP, allows us to writeP in terms of an
(n11)-dimensional vectorf5(f0 ,f1 , . . . ,fn) t such that

P5
ff†S

f†Sf
. ~A12!

Then, Eq.~A11! reduces to

]xf1Eff2 ihe2 iuTf50,

]zf1~EfẼf2]xẼf !f1 ihe2 iuEff1h2e22iuTf50.
~A13!

The new solutionEg in Eq. ~A5! now becomes

Eg5Ef22ihcosuFT,
ff†S

f†Sf
G ~A14!

or, in component,

ck5ck
cw1

2h cosuskf0fk*

~ uf0u21s1uf1u21•••1snufnu2!
;

k51, . . . ,n. ~A15!

As an example, if we chooseEf to be the cw background a
in Eq. ~2! such that

Ef5S 0 c1
cw

••• cn
cw

2s1~c1
cw!* 0 ••• 0

A A A

2sn~cn
cw!* 0 ••• 0

D , ~A16!

the components of Eq.~A13! give rise to

]xf01(
j 51

n

c j
cwf j1

1

2
he2 iuf050,

~A17!

]xfk2sk~ck
cw!* f02

1

2
he2 iufk50,

and

]zf01 i (
j 51

n

s j uc j
cwu2f01(

j 51

n

~bj1 ihe2 iu!c j
cwf j

1
i

2
h2e22iuf050,

~A18!

]zfk2 isk~ck
cw!* (

j 51

n

c j
cwf j2skbk~ck

cw!* f0

2 ihe2 iusk~ck
cw!* f02

i

2
h2e22iufk50.
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These equations become simplified in terms of new varia
wk[exp(Dk)fk ; k50, . . . ,n whereDk are defined as in Eq
~8! such that

]xw1Uw50, ]zw1Vw50, ~A19!

for w5diag(w0 , . . . ,wn) t and matricesU and V defined as
in Eq. ~3! where we have changed the parameterj
[hexp(2iu)/2. As mentioned earlier, these two matric
commute, i.e.,@U,V#50. Thus, by solving the eigenvalu
problem, we may diagonalizeU and V simultaneously in
terms of an (n11)3(n11) matrix D5(di j ) such that

D21UD5diag~p0 ,p1 , . . . ,pn!,
~A20!

D21VD5diag~q0 ,q1 , . . . ,qn!,

with eigenvaluespk andqk(k50,1, . . . ,n) for U andV, re-
spectively@18#. Then, the rotated vectorB[D21w satisfy

]xBk1pkBk50, ]zBk1qkBk50, ~A21!
swhich can be integrated immediately to yieldBk
5ukexp(2pkx2qkz) where uk are constants of integration
Finally, using the relation

fk5exp~2Dk!wk5exp~2Dk!(
j 50

n

dk juje
2pkx2qkz,

~A22!

and Eq.~A15!, we obtain a multicomponent soliton solutio

APPENDIX B: SINGLE DARK-DARK SOLITON

In the following, by making an assumption of equal am
plitude of each cw background,a15a25a for real a, but
allowing different carrier frequencies such thatb152b2
5b, we solve the characteristic problem in the cases1
5s2521 explicitly, and derive the dark-dark soliton pa
for small b. Under these restrictions, matricesU and V be-
come
ll
s

U5S 0 a a

a 2~ ib12j! 0

a 0 ~ ib22j!
D ,

~B1!

V5S 0 a~b12i j! a~2b12i j!

a~b12i j! 2 i ~b21a214j2! ia2

a~2b12i j! ia2 2 i ~b21a214j2!
D .

Instead of usingj, we introduce a complex parameters[sr1 isi by j5A2asinhs. Also, we make an assumption of sma
detuning between cw backgrounds (b/a!1) and solve the characteristic equation perturbatively inb/a. Then, the eigenvalue
of U up to the orderb2/a2 are given by

p052A2aS 21
b2

a2D sinhs,

p15A2aS e2s2
b2

4a2 e22ssechsD , ~B2!

p252A2aS es2
b2

4a2 e2ssechsD ,

and eigenvalues ofV are

q0522ia2~114sinh2s!,

q15 ia2S 4e2ssinhs2
b2

a2 e2ssechsD , ~B3!

q252 ia2S 4essinhs1
b2

a2 essechsD .

The eigenvectors of matricesU andV constitute the matrixD, which is given by

D5S 2 i ~b/a! A2es2 i ~b/a! 2A2e2s2 i ~b/a!

211A8isinhs~b/a! 12A2ie2s~b/a! 11A2ies~b/a!

1 1 1
D , ~B4!
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up to the orderb/a. Then, the multicomponent soliton can b
obtained from Eq.~6!,

c15S a24A2sinhsrcossi

w0w1*

uw0u22uw1u22uw2u2D
3ei (bx1b2z14a2z),

~B5!

c25S a24A2sinhsrcossi

w0w2*

uw0u22uw1u22uw2u2D
3ei (2bx1b2z14a2z),

wherew1 ,w2 are to be fixed. In order to avoid the singula
ity, the integration parametersui must be chosen such tha
the denominatoruw0u22uw1u22uw2u2 should not vanish in all
cases. Finding exact conditions of the solution parame
which make the denominator either positive or negative d
nite for all values ofx and z is not an easy problem. How
ever, we may have an approximate estimate by looking at
coefficients of the terms in the denominator which grow ra
idly for largex andz. This can be done by checking the sig
of Ti[uD0i u22uD1i u22uD2i u2 and setuk50 for somek if Tk
alone has a different sign. Up to the orderb/a, they are given
by

T05222 lcoshsr , T152exp~2sr !222 lsinhsr ,
~B6!

T252exp~22sr !221 lsinhsr ,

where l 54A2d sinsi . Thus, if sr.0(sr,0), a nonsingular
solution may be obtained by takingu150(u250) in Eq.~7!,
i.e.,

w05D11u0e2p0x2q0z1D13u2e2p2x2q2z,

w15D21u0e2p0x2q0z1D23u2e2p2x2q2z, ~B7!

w25D31u0e2p0x2q0z1D33u2e2p2x2q2z,

whereDi j is the component of the matrixD given by Eq.
~B4!. Explicit calculation up to the orderb/a gives rise to

w0w1*

uw0u22uw1u22uw2u2

5S e22D2g2e2 i e2g2z

4A2eisisinhsr

2
i

2

b

a

cosh~2D1g1h!

A12e22sr

2 iemsin~e1si1 im!D 1

M
,

rs
-

e
-

w0w2*

uw0u22uw1u22uw2u2

5S e22D2g1e2 i e2g2z

4A2eisisinhsr

1
i

2

b

a

cosh~2D1g1h!

A12e22sr

1cos~e1si !D 1

M
, ~B8!

where

M5cosh~2D1g!2ksin~e!,

D52
a

A2
e2srcossi~x2zA8ae2srsinsi !,

e5xA2ae2srsinsi12za2e22srcos 2si ,
~B9!

g5 ln
u1

u2A12e22sr
, z5 ln~u2 /u1!,

h5 lnA12e22sreisi, m52
1

2
ln@322exp~22sr !#,

k5A8
b

a
Ae2sr21cossi .

In the leading order withb50, this solution becomes

c15ae4ia2z2 isi@ isinsi1cossi tanh~2D1g!

1A12e22srcossisech~2D1g!e2 i e#,
~B10!

c25ae4ia2z2 isi@ isinsi1cossi tanh~2D1g!

2A12e22srcossisech~2D1g!e2 i e#.

Note that this agrees with the dark-dark pair obtain
through the SU(2) rotation of the dark-bright pair as in E
~28!.

Energy oscillations between two componentsc1 and c2
also arise in this case. Along the trajectory of the solito
which is given by the condition D50, or x
5A8zae2srsinsi , e increases by 2p whenz increases by the
period

Dz5
pe2sr

a2 F12S b

aD 2S 4e2srsin2si2
e2srcos 2si

cosh2sr1cos 2si

2
sin2si

cosh2sr2cos 2si
D G . ~B11!

In the leading order, this agrees with the previous resul
Eq. ~44!.
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