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Systematic construction of multicomponent optical solitons
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A systematic method is presented to construct multicomponent optical solitons for the system governed by
the vector nonlinear Schdinger equation. By solving the characteristic eigenvalue problem, we obtain a
generaih-component soliton solution in the presence of nonzero background fields. In the two-component case,
we show that this general solution not only includes previously known soliton solutions, e.g., bright-bright,
dark-bright, dark-dark pair solitons for self-focusing or self-defocusing media, but depending on the choice of
parameters it also exhibits different types of soliton solution. In particular, we obtain a general dark-bright type
solution in a self-focusing medium, which describes a breakup of a dark-bright pair into another dark-bright
pair and an “oscillating” soliton, or the reverse fusing process. In the case of a self-defocusing medium, we
generalize the previously known static dark-dark pair and show that a general dark-dark pair is non-static and
oscillates periodically through exchanging energies between two components. It is shown that the static case
arises when the complex soliton parameter is restricted to a pure imaginary number. We address about the
criterion for testing singularity in a general solution in terms of solution parameters, and also about the
non-Abelian SUQ) symmetry of the system.

PACS numbdis): 42.65.Tg, 05.45.Yv, 05.60.Gg

I. INTRODUCTION tor waveguide operating at a wavelength below half its band
gap[9].

Optical solitons have been the subject of intense studies in The integrability of the vector NLS equation has been
view of their potential applications in future optical commu- shown by Manakov who has also obtained the bright soliton
nication systems and also in the development of ultrafasin a focusing medium by applying the inverse scattering
optical switching devices. In optical fibers with normal method[10]. On the other hand, in the case of nonvanishing
group-velocity dispersion, or in bulk media with self- background fields of the multicomponent system, the inverse
defocusing nonlinearity, solitons arise on a background fieldscattering method is technically highly involved and dark
as localized intensity dips which are known as dark solitonssolitons in fact have been found in this way only for the one
[1]. It is known that dark solitons, when compared to brightcomponent case. In the two component case, the Hirota
ones, are generally more robust than bright solitons and an@ethod has been adopted to obtain dark solitons instead of
less susceptible to Gordon-Haus jiti@—4]. Recently, there the inverse scattering methdd1,12. In particular, Shep-
have been considerable interests in the effects of multiplpard and Kivshar have shown that a set of nontrivial soliton
modes, e.g., multifrequency and/or two different polariza-solutions such as dark-dark and dark-bright pairs of solitons
tions, to dark solitons as well as to bright solitons. By solv-can be found in this wal12]. Using the Hirota method, they
ing the relevant coupled nonlinear Sctiimger (NLS) equa-  have also found static bound states and multisoliton solutions
tions for two-component pulses, various types of exactescribing interactions among dark solitons. Despite its suc-
solitons and solitary wave solutions such as bright-brightcess in deriving nontrivial soliton solutions, the Hirota
dark-bright, and dark-dark pairs of solitons have been foundnethod, however, does not provide a systematic way to con-
[5]. The coupled NLS equation which governs the propagastruct a general type of soliton solutions. This is because the
tion of multimode pulses is not integrable in general and thugnethod presupposes specific functional forms of each com-
solitons do not exist. Nevertheless, in most cases solitargonent. Indeed, this particular specification of solution forms
wave solutions can be found by looking for a steady statejesults in the intensities of each component of the dark-bright
localized configuration. When the cubic nonlinear term in theand the dark-dark solitons to be static, which is not true for
coupled NLS equation is proportional to the total intensity,more general types of solitons as we will show later. More-
the coupled NLS equation becomes the integrablever, the Hirota method is not appropriate in the case of a
n-component vector NLS equation, also known as the Managenerain-component vector NLS equation since it requires a
kov model in the two component case, which admits exactlever guess on functional forms for each component. This is
soliton solutions. Physically, the Manakov model describegyuite difficult for n larger than two and it can be justified
either the pulse propagation in a randomly birefringent fiberonly after checking the large set of consistency conditions in
[6,7] or in an elliptically birefringent fiber with the ellipticity addition to solving bilinear equations. Thus, the Hirota
angle#~35° and the relatively small beat lend®). It also  method does not provide a constructive way to find a general
describes the pulse propagation in bulk AIGaAs semiconducsoliton solution. Therefore, though the inverse scattering

method could provide eventually a general multicomponent

soliton solution in nonzero backgrounds, we may safely say
*Electronic address: gpark@nms.kyunghee.ac.kr that a practical method to construct a general multicompo-
TElectronic address: hjshin@nms.kyunghee.ac.kr nent soliton solution is absent.
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In this paper, we resolve this problem by introducing a Il. THE CHARACTERISTIC PROBLEM
unifying framework for the construction of multicomponent
solitons. Modifying the conventional inverse scattering
method, we obtain a simple, yet systematic method to con- 2 o 2, . 2
struct a general type of soliton solutions for tkeomponent Tah= ~ 103 = 20 (ol ol gl e,
vector NLS equation both for the self-focusing and the self-
defocusing cases. We show that, in order to construct a gen-
e_ral s_oliton _solution for the-component vect_or_NL_S €qua \yhere the signatures, are either+1 or —1. In a self-
tion, it requires only to solve the characteristic e!genvaluqocusing medium, for exampler;=- --o,=1 while in a
problem fo_r a couple of co_nstarmfr 1)X(n+1) matricedJ self-defocusing mediumg,=---o,=—1. As we will see
and V, which are determined by the parameters of backqater the vector NLS equation is integrable for any set of
ground continuous wavecw) fields as well as additional yajyes ofoy. Thus, we treat both the self-focusing and the
parameters characterizing solitons. A general one soliton sase|f-defocusing cases simultaneously in a single framework
lution in arbitrary multicomponent cw backgrounds can bewithout specifying o, unless we need them explicitly. A
obtained in this way. We present a unifying treatment ofsimple but nontrivial solution of the vector NLS equation is
solitons both for the self-focusing and the self-defocusinghe continuous wavécw) background solution,
cases. In the self-defocusing case, we find that a general

The vector NLS equation under consideration is given by

(1)
k=1,...n,

soliton solution obtained by the method can be singular de- =aexpibx+icz);
pending on the choice of solution parameters. A criterion to 2
test the presence of singularity is given. Cy= bE_2(0'1|al|2+ - toplag?d).

In order to demonstrate the power of the method, we work
out the two component case in detail. We find various typesiow, we look for multicomponent solitons which satisfy the
of nontrivial soliton solutions which generalize previously asymptotic boundary conditioni,— l//ﬁWeXanf) as X
known cases of soliton solutions including dark-bright and— +o up to certain constant phaseg . As we show in
dark-dark pairs of solitons. In particular, we obtain a generajpppendix A, a general multicomponent soliton can be con-
dark-bright type solution in a self-focusing medium, which structed systematically by applying the dund transfor-
exhibits a nontrivial breakup behavior of a dark-bright pairmation(BT) to the background cw solution. Generally, BT is
into another dark-bright pair and an “oscillating” soliton, or known as a mapping which adds one additional soliton to the
its reverse fusion process. In the case of a self-defocusingiven configuration. In the simplest case, BT generates one
medium, we generalize the previously known static dark-soliton with a vanishing asymptotic boundary behavior when
dark pair and show that a dark-dark pair is not static in genapplied to a trivial vacuum solution. Successive applications
eral but oscillates periodically by exchanging energies beof BT also generate multisoliton solutions. An explicit pro-
tween the two components. This nonstatic behavior igedure of constructing one soliton using BT is explained in
explained by using the non-Abelian symmetry of the vectorAPPendix A. Despite the complexity of the procedure, the
NLS equation. When the cw backgrounds of dark-dark pai,method ar_1d the final outcome can be _summarlzed quite sim-
have the same carrier frequencies, we show that the darlly- That is, the problem of constructing one multicompo-
dark pair can be obtained by taking a @)-symmetry rota- nent 'sol|ton reduces to the fqllowmg charact_er|st|c problem;
tion of the dark-bright pair. In which case, we compute theCorlSIder 0+1)x(n+1) matricesU andV defined by
period of oscillation and show that the period is inversely

proportional to the power of a cw background. In the case of 0 ot
different carrier frequencies, we explain how a general dark- —oja; —-B; 0 .- 0
dark pair can be found, at least with a help of the MAPLE U= : 0
computer algebra system. By making an assumption of small ’
detuning and equal amplitudes of cw background and using
perturbation, we found explicitly a dark-dark pair and the —onan 0 --- 0 -B,
oscillation period. The oscillation period is determined by ®)
the width and the grayness of dark solitons as well as the 0 a,C; --- --- a,C,
power of background cw fields. We show that it depends on *
the grayness only if there is detuning between two cw back- —od Gy By e Bap
ground fields. V= : : : ,
The plan of the paper is the following; in Sec. Il, we

introduce the characteristic problem for the construction of «

03, Gy Epng R Enn

one soliton in the vector NLS equation. Explicit examples of
the two component NLS equation are given in Secs. Il and
Sec. IV, which deal with the dark-bright and the dark-darkWNere
pairs of solitons respectively, and Sec. V is a discussion. The
derivation of the characteristic problem and a nontrivial ex-
ample of the dark-dark pair are treated separately in the Ap- - o
pendixes. Ej=—loiala (i#]),

Bx=(2&+iby), Cy=(by+2i¢),
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n Thus, we obtain a solution which is specified by quite a large
E=—i bﬁ—E oila|?+ o ay/?+4£%]. (4  set of parameterspa(,by), representing amplitudes and fre-
=1 quencies of background cw light, an§l controlling the

These matrices are made of parameters of cw backgroundédth and the grayness of a soliton, and finally complex
a, ,b, and a new complex paramet&rthe physical meaning constanta which are related to the soliton location. How-
of which will be given later in terms of the intensity and the ever, when some of the signatukegs (or all of them as in the
grayness of a soliton. One can readily check that these tweelf-defocusing cagere negative, not all the domain of pa-
matrices commute, i.e[U,V]=0. Thus, by solving the ei- rameter space admit physically sensible soliton solutions.
genvalue problem, we can find an4{1)X(n+1) matrix  The solution in Eq(6) becomes singular when the denomi-
D=(d;) which diagonalizes matricet) and V simulta-  nator|eo|>+ 04| p1|*+ - - - + 0| ¢by|* vanishes. Though sin-
neously, gular solutions may find certain physical applications by
4 . confining the solution to a restricted region which avoids the
D "UD=diagpo.p1; - - - Pn), singular region, generally we are only interested in non-
. . (5 singular solutions. So far, unfortunately, we have not been
D *vD=diagq9,q1, - - - ,4n), . . ; .
able to find a concrete criterion for testing the singular be-

where eigenvaluep, and q,(k=0,1,...n) are complex havior of solutions only in terms of a given set of param-
numbers. Then, a general multicomponent one soliton solleters, such as matricesandV. Nevertheless, one may scru-

tion is given by tinize the behavior of the denominator for specific cases
under consideration and analyze the singular behavior with-
o 2(E+ & ) owdodi out much difficulty.
W=+ In the following two sections, we work out the two-

2 2 2
+ +ot ) . ot
([0l ™+ ol 4] 7al énl%) component casen(= 2) in detail. We solve the characteristic

fork=1. ...n. (6) problem to obtain solitons for different values ®f and o,
' ’ with an explicit analysis on the singularity structure of solu-
Here, ¢, are defined by tions.
n
d"‘E,Zo i€ — A= pix—a;2], ™ lll. DARK-BRIGHT PAIR

The two-component vector NLS equation is presumably
most relevant physically in view of its use in describing the
propagation of light with two different polarizations. Earlier
z, works on the vector NLS equation thus have focused only on
the two-component case. First, we consider the case where
only ¢, has nonzero cw background so ttegt#0,a2,=0.

) This will lead to the dark-bright type soliton solution. But we
emphasize that this solution will also include the bright-
bright type solution in the limit whera,; goes to zero. In this

whereu; are arbitrary complex constants and
n

Ag=&x+| 2182+i Y, oy|ay?
=1

n

bﬁ_Z’l o|ay|?+2£2

A= (E+iby)x+i Z,

for k=1,...n. case, matriced) andV are given by
|
0 a, 0
0 0 —(iby,+2¢)
. €)
0 a;(b,+2i¢) 0
v=| —oia(by+2i§) —i(bi+4£?) 0
0 0 —i(b5—oq|a.|?+4¢€?)
Eigenvalues ofJ andV can be readily found with the result
1 H i 2 2
p0=§[—(|b1+2§)+\/(|b1+2§) —4aq|ay|?],
1 H i 2 2
plzi[_(lbl+2§)_\/(|bl+2§) —4aq|ay|?], (10

po=—(iby+2§),
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for matrix U and
do=(b1+2i&)po,
q1=(by+2i&)py, (11)
Qo= —i[b3+ (01— 20,)|as]?+4£7],

for matrix V. The matrixD, which diagonalized) and V

simultaneously via the similarity transformation, is deter-
mined only up to a matrix which leaves the eigenvector in-
variant under the similarity transformation. We fix this am-

biguity by choosingD by
a; a; O

D=| po pP1 O]. (12
0 0 1

Then, Eq.(7) gives rise to
d)O: aleiA1/2(uoe7RX+ uleRX),
$1=e""1(pouge™ '+ pyu eR), (13
Bo=Usexy] éx+2i£°7],
where

Ar=byx+(b2—204|a;/?)z,

R=(ib/2+ £)?— 04| ay?, (14
X=x+(b;+2i¢)z,

andug,u, are arbitrary constants. Finally, from E®), we
obtain a general expression for the “dark-bright pair” o
soliton in the two-component case:

_ 2
yr=aie' ™| 1+ oy (+£5) (Uge™ ™+ ugel)

X (phute R 4 prux R |
) (15
Y=g 0231U5 (£+ &%) (Uge™ "+ u )
X exf £ x— 2i £*?z],
where the denominatavl is given by
M=|a;(uge™ **+u,e"%) >+ oy (pouoe™ "+ pyu ™))

+ 0| uexp( Ex+ 2i £22)|2. (16)

This shows that itr; or o5 is minus one, the denominatit

can possess zeros thereby makifigand i, singular. For a
better understanding about the behavior of solutions, we now N=2|a,|coshSsing

consider each case of separately.

A. The self-focusing casd o= 0,=1)

In this case, the denominatbt is positive definite so that

Q-HAN PARK AND H. J. SHIN
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behavior of the general solution in E@.5), we simplify the
expression in Eq(15) in terms of a new complex parameter
S+ip defined through

2|aj|cosiS+iB)=ib,+2&. (17
Then, we have

—lajlexp—S—ipB), pi1=—lailexpq(S+ipB)

and

=|ay|sinh(S+iB), X=x+[2b;+2i|a;|cosHS+iB)]z
(19

As a particular case, we first assume thgt0. Also, we
take thatu,=u,|a;|\1+e?S, which can be done by choos-
ing appropriate origins of coordinatesandz Then, we ob-
tain a simple expression of the solution

1= e 'A(i sin B+ cosBtanhv),

o= Vcosp\1+e e Nsechw, @0
where
W=|a,|cosBe” [ x+(2b;+2|a;|e SsinB)z],
|a;|e Scos 28 (1
N=—|a,|sinBe S x+ 2b1_lsT z},

and "= a,exfibyx+i(b?—2Ja,?)z] is the cw background.
Equation(20) represents a dark-bright pair of soliton solu-
tion in a self-focusing medium and agrees with previous re-
sults[13 14. Similarly, had we assumed thaj=0 instead
f of ug=0, we would have obtained the same solution except
for the changesp— — 8 and S— — S. Equation(20) shows
that the intensity of the dip of the dark componepmt
reaches to zero only when gr0. Thus, the paramete®
measures the grayness of the dark component while the pa-
rameterS, in combination witha,| andg, controls the pulse
width.

Another special case of solution witl,=0, however,
shows a completely different behavior such that

WcoshScosr(W— 2iB)+cosB cogdN+2iS)
coshScoshW+ cosBcosN '
(22)

h=—y°

=0,

where

W= 2|a,|sinhScosp| x+

. _coshs
2b,—2|ay|sinB sinns 12|’
(23)

X+| 2b,+ 2|a1|S|nhS

0S 28)
z
ing
and we have assumeg= u,exp(S+iB) without loss of gen-

erality. Note that/, vanishes identically so that; becomes
a solution of the scalar NLS equation. In the limit

i, andy, are always nonsingular. In order to understand the— =, y; approaches asymptotically toy*"e™2'#, On the
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FIG. 1. Intensity profiles(a) |¢4|?> and (b) |4,|? with a; 24 .
208, bl=0.2, b2:_0.2, U0:1, U]_:l, U2:1, 82155, ,B 1.81
=0.92. 1.6
1.4
other hand, if we take the limitja;]—0 keeping 1.2
y(=|a;|eScosp) constant,y, reduces to 1
. 0.8
y1=—ye'%sectW for W=y(x+2Q2), 0.6
(24) 0.4
S=QOx+(Q%—9Az, T NG e e
which is the well-known bright soliton of the scalar NLS 20 10 ) - 1'0“. 20 X
equation. Thus, Eq(22) represents a bright soliton in the
presence of a nonvanishing cw backgroiag]. The pres- FIG. 2. Dotted and solid curves represet|® and|y|?, re-

ence of a periodic function, cd§ in the expression ofy,  spectively, for various values ofat (a) z= — 10, (b) z=0, and(c)
implies that the bright soliton and the cw background inter-2= 10 This shows the dynamics of a solution which Zex1 is the
acts by exchanging energy periodically thus becoming aff@rk-bright pair plus the solution in E2).
“oscillating soliton.” This oscillating behavior can be seen .
in Fig. 1. Moreover,; possesses a unique property when—Uz=1,5=1.555=0.92. These figures show a breakup of
S=0. In this caseW= — 2|a,|%(sin 28)z that is, it depends dark-bright pair into another dark-bright pair and an oscillat-
onzonly. This makes soliton to be trapped completely by cwind soliton. Different choices of parameter values lead to the
light. Recently, this soliton-trapping property of cw light has "everse process of fusion.
been applied to the problem of soliton timifge].

Now, in the case of a general solution where wllare B. The self-defocusing caséo=o,=—1)
nonzero, all the above behaviors show up together. An This case corresponds to the bulk media with self-
asymptotic analysis shows that this solution describes @efocusing nonlinearity, or the optical fiber with normal
breakup of a dark-bright pair into another dark-bright pairy.q,5 yelocity dispersion. As in the previous case, we intro-

and an “oscillating” soliton, or its reverse fusing process y,ce a new complex parame®t-i 8 instead of¢
depending on the choice of parameters. Instead of presenting '

the asymptotic analysis, we show such behaviors in Figs. 1 2|a|sinn(S+iB)=ib,+2¢ (25)
and 2. Figures 1 and 2 show intensity profilesyaofand i,
with parameter values given by;=0.8p;=b,=0,up=u;  so that eigenvaluegy,p; become
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Po=lailexp—S—iB), pi=—|a|exp(S+ip). 1
(26)

Then, the denominatdvl in Eq. (16) reduces to 087
M =lay|?[(1— e 25)|up|2e” RX* R*X* 0.67
+(1—e?S)|uy | 2R R 0.4-

+2Rd(1+e?P)utu eR R

o]

i
—§b1+|a1|sinr’(s+iﬁ)

0.2

i
—|uy|? — 5bi+aysinh(S+ig) |x

2
4

2

: (27)

+ 2i

which shows thatV becomes negative definite only uf,
=0,u;#0,S>0 [case@] oruy#0,u; =0, S<O0 [case(b)].
Otherwise,M possesses zeros which make the solution sin-
gular. In casga), we assume the relatiofu,|?=|a,|?(e*S
—1)|u,|?, without loss of generality. Then, E¢L5) reduces

to the dark-bright pair as in Fig.(8),

Y= e 'P(i sin B— cosBtanh),

. (28
o= *™\1— e~ ScosBe Nsechw,
where
W=|a,|e” ScosB[x+ (2b,—2|a,|e” SsinB)z], .
2 (29 c
. ~ .COS ] c
N=|a,|e SsinpB| x+| 2b,+|a e S sing |4 12 ()
and y°"=a, exdib;x+i(b?+2a,|?)z] is the cw background. " A L
In case(b), by assuming thdu,|?=|a,|?(e” 25— 1)|u|?, we 0]

obtain the dark-bright pair which is the same as in &%)
with S— —S up to a global U(1) phase rotation.

The dark-bright pair in Eq(28) has been obtained previ-
ously by using the Hirota methdd 2,13. Note that when
S=0, ¢, vanishes whiley; becomes the dark soliton of the
scalar NLS equation. As before, the parame@emeasures
the grayness of a dark component, i.e., the ratio between the FIG. 3. (a) The dark-bright pair witha;=1, a,=0, b;=0.12,
maximum and the minimum intensities of soliton is given by S=0.5, 3=0.2, (b) the SU(2)-rotated dark-bright pair, aric) the
cogB. As Sincreases, the bright solitogi, emerges at the dark-dark pair witha; =1, a,=0.7,b;=0.3,b,=~0.3,us=1, u;
cost of broadening the dark componepi. In the limit ~ =1,u,=1,5S=0.49,8=0.13. Curves A, B, and C represe|?,
where S goes to infinity, both dark and bright components |#2|* and|y:|*+[4,|?, respectively.
are completely flattened thus becoming cw background
fields. Therefore, the amplitude of the bright component is
limited by that of the dark component. This contrasts withy, =0, >0 (¢,=—0,=—1). The solution for caséc) is

bright component is unlimited and becomes very large at thggme parameteB+i3 as in the self-defocusing case. The

cost of narrowing the pulse width. solution for caséd) [case(e)] can be obtained from E¢28)

by replacing V1—e 2° with e 25—1 (respectively,

Je?5—1) in y,. However, these solutions are fundamentally
This corresponds to the case where each polarizatiodifferent from those of case®) and (b). Unlike the self-

components feel opposite typdself-focusing and self- defocusing case, the amplitude of the bright pair can grow

defocusing of nonlinearity. A similar analysis on the de- indefinitely while the pulse width of both the bright and the

nominatorM shows that nonsingular solutions are possibledark pairs both sharpens. Solutions of cagbgsand (e) may

for three cases: casg), u,=0 (0,=—0,=1); case(d), be compared with the “inverted” and the “noninverted”

Up=0, u;#0, S<0 (o0y,=—0,=—1); and casde), up#0, ones in[14].

0.6

0.4-

C. The mixed caseo;=—0,=1 or o,=—0,=—1
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IV. DARK-DARK CASE the componeni/;. When the cw background is present in
both components, we are led to consider the dark-dark pairs
In the previous section, we found the dark-bright pair ofof solitons which are characterized by parameters in the ma-
solitons when the background cw light is present only alongricesU andV,

0 a, a,
U=| —oia] —(ib;+2¢) 0 ,
—0,a} 0 —(ib,+2¢)
. . (30)
0 a;(b;+2i¢) ay(b,+2i¢)
v=| —oiaf(b;+2i&) —i(bi—oylayl?+4¢?) —ioiaia,
— 0,85 (by+2i€) —io,a5a, —i(b3—oilay®+4&)

Thus, in the given cw backgrounds specified by parameterSolving this cubic equation, we obtain eigenvalues
a;,a, andbq,b,, the dark-dark pair of soliton solution is )
characterized by a complex paramegeamounting to two __ E(ib +ib +4§)_1_' 3

degrees of freedom. This should be compared with the dark- Po= = 3(1D171b2 12
dark pair of solitons if12] which has only one independent .

parameter. In fact, as we show in the following, the dark- +1+' V3 K13

dark soliton in Ref[12] appears only as a special case where 3 '

the real part o€ goes to zero. This shows that our dark-dark (32)
soliton with a nonvanishing real part @f is a completely 1. . 1+i\/§|/1/3 1-i \/§
new type of dark-dark soliton solution which has not been P1= 3 (iP1Fiby+48) ——o—K™H—3
obtained previously. We also find that the nonvanishing real

Kl/3

LK_1/3,

part of £ results in an interesting behavior of the soliton 1. , 1 .. 2 s
solution, i.e., it induces a periodic modulation of the total Po= = (b1 +iby+48)+ K= LK,
intensity of the dark-dark soliton in contrast to the static case
of total intensity in Ref[12]. where

Now, we study the dark-dark case in detail. The charac- >
teristic eigenvalue problem for matricé$s and V requires K=—4R+4y4L +R%,

solving cubic polynomial equations. We assume for conve _ ., .. 2 2 P 2
niencea, anda, to be real so that the characteristic equationL_ 4€7=2i(bytbp) 4 b1+ b5+ 3037+ 30,85~ baby,

for the matrixU becomes R=—1663—12i(by + b2)§2—6(b§+ b§+4b1b2—3olai

p3+[4§+i(b1+bz)]p2+[4§2+2i(b1+b2)§+alai —30'265)5—2i(b?+bg)—gialai(bl—sz) (33)
+ 0285~ byby]p+2(aiai+ opa)) é+i(oath, — 9ipa2(by— 2by) + 3ibyby(by +by).
+ 0pa5b;)=0. (31)

We choose the matri® which diagonalized) by

(iby+2&+po)(iby+2&+pg)  (iby+2&+py)(iby+28+py) (iby+28+py)(iby+28+py)
D= —oqay(iby+2£+po) —oay(iby+2&+py) —oay(iby+2£€+py) ) (34)
—0,a,(ib1+2£+po) —0ay(ib+2&+py) —0,a,(ib+2£+py)

This matrix D also diagonalized/ through similarity transformation and the resulting diagonal elements are given by
eigenvalues oV,

(by+2i &) pi+ (ibyby+2¢€b; — 2&b,+ 4i £2) p— 0pa5(b,— by)
4= (iby+ 26+ py) !

k=0,1,2. (35
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Finally, from Eqs.(6)—(8) we obtain a general dark-dark pair ~ Unlike the static dark-dark pair, each components of the

of soliton solution dark-dark pair in Eq(40) are linear combinations of the tanh
and the sech terms with a time-dependent relative phase.
ow 2(&+ &) oy dodi This leads to an interesting oscillating behavior of intensities
W=t for k=1,2, of each component;|?> and |,|?, so that the dark-dark

2 2 2
+ + e . . ;
([ol*+ oul $a|*+ o2l 2% (3¢  Pair is no longer stafic. In order to see this, we simply note

that the relative phase facter N causes the intensitigg, |
where and |,|? to possess an oscillating term proportional to
cos(N+ 65— B—n) or sin(N+6—B— 7). The period of oscilla-

_ 2 i i tion can be obtained by focusing on the trajectory of a soliton
$o= gfo [(iby+2&+pi) (ibo+2€+ ) u which occurs along the line,
X expl — Ag— PX— Qk2), W=|a,|cosBe” [ x+ (2b,—2|a,|sinBe 5)z]=0.
, (37) (41
P1=— UlkZO a,(iby+2&+puexp — A — pX—0gy2), With such a restrictionN reduces to
: N= [2al*e” (42)
by=—022, a(iby+2£+puexp — Ay — pX—02), B 2|a1|(sin,8)e‘s—2blx’
k=0
and A, are as in Eq(8). This solution provides a general which shows that the period of oscillation is
expression of the dark-dark pair of soliton with a proviso that
parameters are chosen in such a way to avoid the singularity 4nl|ay|(sinB)e S—by]
of the solution as explained in the previous section. Instead X= 2% S (43)
of analyzing the properties of the dark-dark solution in a 1
general context, we first restrict to a few limiting cases of the . i f th iabl
above solution which agree with previously known solutions,Or In terms of the variable,
and then explain the new features of a more general solution.
The simplest case of the dark-dark pair as given above Az= 2m (44)
arises when each cw background has the same carrier fre- ENE

qguency, i.e.b;=b,. In this case, the dark-dark pair can al-

ways be transformed into the bright-dark pair through theppyiously, this periodic behavior has nothing to do with the
global” symmetry of the vector NLS equation defined as peating between the cw background fields since cw fields
follows; if we rewrite the vector NLS equation in a matrix paye the same carrier frequencies in our case. Note that the

form in terms of the vectoW = (4, ... )" and the diag-  ampjitude of the oscillating terms have a factir—e 2 so
onal matrixXo=diag(cy, . .. ,0p) such that that the oscillating behavior vanishes f8=0. In which
20 it case, the solution reduces to the dark-dark pair which is ob-
¥ ¥ =21 (W20 ¥) W, (38 tained through the SU(2) rotation of the scalar dark soliton.
. . . . i i i 2 2y i P P
then the equation is invariant under the symmetry rotationSince the total intensity| ¢-|*+ |1,|°) is also invariant un-
W MW, where thenx n matrix M satisfies der the SU(2) symmetry transformation, it does not show the
oscillating behavior. However, as we show below, in the
MTSM=3,. (39 general case where, #b,, the total intensity also exhibits
) ) . ) . an oscillating behavior.
Since this symmetry rotation can always briagto zero in A less trivial case arises whdm # b, and the real part of

U, we are in the same position as in the previous sectior goes to zero. In fact, this is the case which agrees with the
which led to the bright-dark pair. Thus, in the self- gark-dark pair in Ref[12]. In order to see this, we first set
defocusing caseX,=—1) for example, the dark-dark pair 4 =s,=—1u,;=0 and consider the solution in the limit
appears as a SU(2) rotation of the dark-bright gsée Fig. .0 wheree is the real part of. We also assume the coef-

4). e.g., as in Eq(28) such that ficient u, to be O(e'?), or u,=\eu, wherel, is of the

= €'2(cosh) e A (i sin B— cosB tanhw) same order withuy. Then, fore<1 a lengthy but straight-
! forward calculation shows that the numerator and the de-
+iel7(sing) y°\1— e 25(cosB)e” N(sectw), nominator in Eq.(36) takes the form with an appropriate
. . choice ofuy,
Yr=ie”'"(sin ) y"e~'A(i sin B— cosB tanh\)
+e "(cosd) y*\1—e *5(cosp)e N(sectw), 2(6+87) podf = AeCdi" | eXp — Pox—do2) [+ O (™),
(40)

- , o | bol >~ 1]~ b2l *=eCol lexp —pox—ao2)|*  (45)
where the coefficients of the linear combination &6(2) L
parameters anV andN are defined as in Eq29). +|exp( — pax—0,2)|2]+ O(€%?),
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FIG. 5. Intensity profiles of a general dark-dark solitan| |2,
FIG. 4. The SU(2)-rotated dark-bright pai@) |¢4|*> and (b)  (b) |4,|?, and (c) | 1|2+ |,|? with a;=1, a,=0.7, b;=0.3, b,
|¢h,%, and (c) |4|2+]|po|? with a;=1, a,=0, b;=0.12,S=0.5, =-0.3,up=1,u;=1, u,=0, £=0.5.
B=0.2,5=0, =0, 6=0.9.

o ) these relations can be found in principle, due to the complex-
where coefficientsso,C,,C, are functions of the set of so- jty of the coefficientsC,, here we only point out that the
lution parameters;a; ,az,b;,0b,,Ug,IM(£§) whose explicit  gark-dark pair of solitons in E446) agrees with the result in
forms are too complicated to present hgpeand g are ei-  Ref. [12] where the relation among the coefficients is also
genvalues evaluated &t=0. In particular, one can easily found. Thus, we have shown that the dark-dark pair of soli-
check thatﬁz andaz are pure imaginary. Then, in the limit tons becomes the static dark-dark pair in the limit where the
e—0, we have real part of the soliton parametérvanishes.

o When Reg) #0 andb, # b,, the dark-dark pair in general
2C, PoX+ doZ is no longer static. Even the total intensity oscillates periodi-
o t > (46)  cally. This behavior is drawn in Fig.(® and Fig. 5.

The oscillating behavior may be referred to the cross
The coefficientsC,,C,,C, are not independent but related terms arising in taking the absolute squarepfs which are
implicitly through the set of solution parameters. Thoughproportional to cddm(pg+ p3)x+Im(qe+q3)x]. This in-

b= +

L

2C
-2
Co
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dicates that if the soliton moves along the trajectoeykx ~ polynomial equation can be solved numerically and the exact
for some constari, the period of oscillation is given by n-component soliton solution can be found at least numeri-
cally.
Ax=2a/[Im(po+p3)+k Im(go+03)]. (47 In the paper, we have considered only one soliton solution
of the multicomponent vector NLS equation. Finding multi-
To illustrate the oscillating behavior, we have worked outsoliton solutions for th@-component vector NLS equation is
explicitly in the Appendk B a special case of the dark-dark important in order to understand interactions among solitons.
pair by assuming thaa;=a,=a, b;=—b,=b, and|b/a|] A general method of constructing multisolitons and explicit
<1. The dark-dark pair of solitons is given up to the orderanalysis of multicomponent, multisolitons in the present vec-
O(b/a) through Eqgs(B5)—(B9). In the case of equal carrier tor NLS system will appear in separate papers.
frequencies, i.e.p=0, this solution becomes the dark-dark

pair obtained through the SU(2) rotation of the dark-bright ACKNOWLEDGMENTS
pair as explained before. The period of oscillation up to the _ ) )
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2 b\ 2 - e2cos X, Informati_on Tschnology Assessment, and by Korea Science
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a? a cosh, +cos X,
sinzsi APPENDIX A: DERIVATION OF THE CHARACTERISTIC
~ Cosh®, —cos ) } : (49 EQUATION

The Baklund transformation is usually defined to be a set
Note that the leading order term depends onlyspn By  of first-order differential equations which generates a solu-
identifying exp(3)=2exp@), one can see that the leading tion of the (integrabl¢ second-order nonlinear differential
order term reduces precisely to the result in Egl). Thus,  equation from a known one. In order to find thécRmnd
the grayness parametgr[see Eq(B10)] controls the period transformation(BT) of the vector NLS equation as in Eq.
only through higher-order terms. In other words, the oscilla{1), we first rewrite the vector NLS equation in a matrix
tion period is independent of the grayness if there is no deform:
tuning between two cw background fields. _ 5
9,E=—d°E+2EE, (A1)
V. DISCUSSION ~
where the (+1)X (n+1) matricesE and E=[T,E], with
In this paper, we have introduced a systematic method t¢ne diagonal matrixT =diag(i/2,—i/2,—i/2,...,—i/2), are
construct multicomponent soliton solutions of the vectordefined by
NLS equation. Ann-component soliton can be obtained by

solving the characteristic problem for any given set of soliton 0 b1

and cw background parameters. In a unifying treatment of —ot 0 - 0

the two component case both for the self-focusing and the E= ,
self-defocusing media, we have constructed explicitly vari-

ous types of soliton solutions as well as recovering the —onh 0 -~ 0

known ones, e.g., dark-bright and dark-dark pairs of soliton (A2)
and also an “oscillating” soliton. We found that the dark- 0 iy, - iy,

bright pair of the self-focusing case is in general unstable . %

against the breakup into another dark-bright pair and an os- E- loyy 0 e 0

cillating soliton. Depending on the choice of parameters, the
reverse process, the fusion of a dark-bright pair and an os-
cillating soliton into another dark-bright pair is also possible.

In the case of a self-defocusing medium, the dark-dark pair ine can readily check that the components of the matrix
in general nonstatic, i.e., it exhibits a periodic energy ex-equation in Eq(A1) is indeed the vector NLS equation in
change between two components with a period inverselyq (1). One of the nice features of the matrix formulation of

proportional to the intensity of cw background. We havethe vector NLS equation is that it is straightforward to write
shown that the dark-dark pair with the same frequency cWhe | ax pair for the vector NLS equation,

backgrounds can always be obtained from a SU(2) rotation

oyt 0 - 0

of the dark-bright pair, and the most general case of the L,W=(d,+E+AT)¥=0,
dark-dark pair with different frequency cw backgrounds can (A3)
be found at least with the help of theaPLE computer alge- L,¥=(d,+EE—E—-NE—N\?T)¥ =0,

bra system combined with an action of SU(2) rotation. In a

general case of vector NLS equation wittomponents, the where A is the spectral parameter. By using the fact that
characteristic problem requires solving an+{1)th order [T,[T,E]]=—E, it can be shown that the matrix equation in
complex polynomial equation. Thus, a general analytic soluEqg. (Al) arises from the integrability conditiorf:L,,L,]
tion for n>4 is not possible. However, we emphasize that=0 for any value ofA. Following Ref.[17], we introduce a
for a given set of numerical parameters, tmer(1)th order  matrix potentialu such thatE=u"1g,u. This allows us to
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state the Beklund transformation of the vector NLS equa- spaces with dimensions greater than one lead to different
tion as follows; let E;=f 14,f, W) be a set of solution types of soliton solutions in general possessing more solution
satisfying Eqs.(A3) and (Al). Then, CEg=g‘1¢9Xg,\Ifg) is  parameters. However, for<2, the one-dimensional projec-
another set of solution if they are related through the BTtion is the only nontrivial one. This fact, combined with the

(which we call type ), generalized unitarity dP, allows us to writeP in terms of an
o (n+1)-dimensional vectoth= (g, ¢4, . - . ,,)' such that
Wy=(\+ing )Wy, (A4) "
: . : pp'3
with the parameter; of BT. Combining the type-I BT with p= ) (A12)
the linear equations in EGA3), we have a more explicit, yet AN
equivalent expression of Bltype Il). That is, for a given
solutionE¢, a solutionE, can be given by Then, Eq.(A11) reduces to
Eg=E¢—in[T,h], (A5) dyp+Erp—ine”"Tep=0,
if h=.g*1f satisfies the type-Il BT as the first-order nonlin- 4 (E B — 5. E/)p+ine E;p+ n?e 2¢Tp=0.
ear differential equations:
(A13)
dxh=—[E¢,h]+iy[T,h]h, The new solutiorE, in Eq. (A5) now becomes
- - (A6)
dh=[d,E;—E(Es h]+in[hEdh— 7T h]h?. bb'S
Eq=E;—2incoso| T, T (Al9)
In order to solve Eq(A6) in general, we first note that the P’
matrix E possesses the generalized Hermitian property: .
or, in component,
E'=-3ES, (A7)
. . 27 cosfaypody
where the diagonal matriX =diag(1g, . . .,0,) measures =+ 5 5 N
the sign of the nonlinear terms of the vector NLS equation (| pol*+aa|da|*+ -+ o[ i)
having the property thak2=1. In the self-focusing case
(o1=---=0,=1), Eq.(A7) shows thaE is anti-Hermitian, k=1,...n. (A15)

i.e., E"=—E while in the self-defocusing caser{=-- -
=og,=—1), E is Hermitian, i.e.E"=E. For other cases o
> E is neither Hermitian nor anti-Hermitian but in a certain

f As an example, if we choodg; to be the cw background as
in Eq. (2) such that

sense a mixture of both. Similarly, matrix potentigld and 0 g g
thush=g 'f possess the property of generalized unitarity, ! n
—o(yi* 0

g'=3g7'3, fT=3f"13, h'=3h"13. (A8) Ei= : _ . (A16)
Combining Eq.(A5) with Eqgs.(A7) and(A8) and also using —op(g™* 0 .- 0
the fact thafT'=—T, we have

the components of EGA13) give rise to
[T,h—h1]=0. (A9) P qAL3) give ri
n
: : : P 1 .
This can be solved in general forin terms of a projection 9o bt Wy = pe—ifp —(
matrix P satisfyingP?=P, xbo 12'1 vitdit g me T éo=0,
(Al17)

h=2(cosg)P—e'’, (A10) 1
) ) ) Ixk— o (P * o~ 57737'0¢k:0,
where 6 is an arbitrary real parameter. Equatids3) and

(A10) implies thatP also possesses the generalized unitarity,
i.e., P'=3P3. Using the projection propertyp?=P, and and
Eqg. (A10), we obtain the following relation from the type-I|

n n
BT: dyho+ ijzl a'j|¢;3W|2¢0+j§=:l (bj +i ne*ia) chquj
(1-P)[d,P+EP—inTe "P]=0,

i _
~ ~ . — 2a—2i0 =
(1—P)[0,P+(E{E{— o Er)P+inE;e 1P T7e T d=0,

+ nPe 20TP]=0. (A11) (A18)

n
i CW % ow oy CWy %
The projection matrixP in general projects down anyn( Iz oW i) ,Zl Vi i~ Wi do
+1)-dimensional vector to the subspace of dimension less

thann+1. In this paper, we restrict only to the case of one-
dimensional subspace for simplicity. Projections to sub-

—ine o (yY")* o~ > n’e #7¢,=0.
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These equations become simplified in terms of new variableghich can be

Pr=expQy) ¢y;
(8) such that

k=0, ... hwhereA, are defined as in Eq.

dye+Ue=0, d,0+Ve=0, (A19)
for p=diag(ey, . . . ,¢n)' and matriced) andV defined as
in Eq. (3) where we have changed the parameter
= pexp(—if)/2. As mentioned earlier, these two matrices
commute, i.e.[U,V]=0. Thus, by solving the eigenvalue
problem, we may diagonalizel and V simultaneously in
terms of an (+1)X(n+1) matrix D=(d;;) such that
D lUD=diag pg,ps, - - - .Pn)s
(A20)

D~ VD=diag do,d;, - - . An),

with eigenvalue9, andq,(k=0,1, ... n) for U andV, re-
spectively[18]. Then, the rotated vect@=D ~l¢ satisfy
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integrated immediately to vyiel®,
=uexp(-pX—0a2) whereu, are constants of integration.
Finally, using the relation

n
D =expl— A p=exp(—Ay) 2 dyjuje P,
j=o
(A22)

and Eq.(A15), we obtain a multicomponent soliton solution.

APPENDIX B: SINGLE DARK-DARK SOLITON

In the following, by making an assumption of equal am-
plitude of each cw background,;=a,=a for real a, but
allowing different carrier frequencies such thiaf=—b,
=h, we solve the characteristic problem in the casg
=o0,=—1 explicitly, and derive the dark-dark soliton pair
for small b. Under these restrictions, matricélsand V be-

&XBk—f—pkBk:O, &ZBk+quk=0, (A21) come
|
0 a a
U=|a —(ib+2¢ 0 ,
a 0 (ib—2¢)
(B1)
0 a(b+2i¢) a(—b+2i¢)
v=| a(b+2i&) —i(b’+a%+4&?) ia?
a(—b+2i¢) ia? —i(b?+a%+4¢&?)

Instead of using, we introduce a complex parametges, +is; by £=/2asints. Also, we make an assumption of small
detuning between cw backgrounds &< 1) and solve the characteristic equation perturbatively/m Then, the eigenvalues

of U up to the ordeb?/a? are given by

p0=—\/§a

P1= \/Ea

p2=—\/§a

and eigenvalues of are

b2
2+;

s b,
e S—He Ssecls

sinbs,

2

|

(B2)

b2
eS— Rezssecfs) ,

0o=—2ia%(1+4sintts),

q,=ia?

q,=—ia?

4e~ Ssinhs— ;efssech;

4eSsinhs+ gzessech;

2

)
|

(B3)

2

The eigenvectors of matricé$ andV constitute the matribD, which is given by

—i(bla)
— 1+ \/8isinhs(b/a)
1

D

J2es—i(b/a)
1—2ie 3(b/a)

—J2e 5—i(bla)
1+2ies(b/a) |,
1

(B4)
1
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up to the ordeb/a. Then, the multicomponent soliton can be

SYSTEMATIC CONSTRUCTION OF MULTICOMPONEN.. . .

obtained from Eq(6),

@o@f
d2_|¢ﬂ2_|¢ﬂ2

=

a—4\/§sinhsrcossi|qp

x @i (bx+ b2z+ 4a2z)
(BY)

¢o¢§
d2_|¢ﬂ2_|¢ﬂ2

Y=

a—4\/§sinhsrcossi|¢)

x @l (-bx+ b?z+4a%z)

where g, ¢, are to be fixed. In order to avoid the singular-
ity, the integration parameterg must be chosen such that
the denominatofeg|?— | ¢1]%— | ¢,|? should not vanish in all
cases. Finding exact conditions of the solution parameters
which make the denominator either positive or negative defi-
nite for all values ofx andz is not an easy problem. How-
ever, we may have an approximate estimate by looking at the
coefficients of the terms in the denominator which grow rap-
idly for largex andz. This can be done by checking the signs
of T;=|Dg;|?—|D4;|?—|D4i|? and seu,=0 for somek if T}
alone has a different sign. Up to the ordiéa, they are given

by

To=—2—Ilcosts,, T;=2exq2s,)—2—Isinls,,
(B6)
T,=2exg —2s;)—2+Isinbs;,

3105
GDo<P§
|¢d2_|¢ﬂ2_|¢ﬂ2
) eszfije*if*V*é_‘_i b cosi2A+ y+7)
4J§e&shﬂsr 2a Vﬁt?EjZ§
+coqe+s) YR (B8)
where
M =coshi2A + y) — ksin(e),
a .
3= - e ooss (x- 2/Bae “sim),
e=x\/2ae %sins,+2zale 2*cos X, ,
(B9)
n—— £=In(u, /uy)
=ln————, ¢=In(u,/uy),
I U2¢1t?6:7§ o

) 1
7=Inyl—e %e'Si, m=-— 5In[3—2exp—2s;)],

b
k=18 SV 25— 1 oSS, .

In the leading order withbh=0, this solution becomes

wherel =4428sins. Thus, ifs,>0(s,<0), a nonsingular
solution may be obtained by taking=0(u,=0) in Eq.(7),
ie.,

®o= Dllu0e7 PoX—Coz D13u2e7 p2X7QZZ,

1= DZluoefpoquOZ_}_ D23u267p2X7QZZ, (B?)

W =ae"® 2 1S sins, + coss tant 2A + )

+1—e ?Scoss;secli2A + y)e €],
(B10)
Wp=ae"®’Z 1S isins, + coss tant( 2A + )

—J1—e ?Scoss;secli2A + y)e '€].

Qr= D3luoe_ PoX—CoZ D33u2e_ pZX_QZZ,

whereD;; is the component of the matri® given by Eq.
(B4). Explicit calculation up to the ordds/a gives rise to

@o@f
|¢d2_|¢ﬂ2_|¢ﬂ2

i b coshH2A+ v+ 7)

(e—ZA—y_e—ie—'y—{

4\2eSsints, 2a [1-e 2
1
—ieMsin(e+s;+im) M

Note that this agrees with the dark-dark pair obtained
through the SU(2) rotation of the dark-bright pair as in Eq.
(29).

Energy oscillations between two componerits and i,
also arise in this case. Along the trajectory of the soliton,
which is given by the conditon A=0, or x
=/8zae %sing, € increases by # whenzincreases by the
period
25 e?%cos
coshz, +cos X,

me
2

b 2
Az= 1—(5) (4e25rsin25i—

a

sir?s;

" cosh, —cos ;

} (B11)

In the leading order, this agrees with the previous result in
Eq. (44).
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